Current Configuration of Biosecure Superintensive Raceway System for Production of *Litopenaeus vannamei*

B.J. McAbee, H.L. Atwood, A.D. Stokes and C.L. Browdy South Carolina Department of Natural Resources Waddell Mariculture Center Bluffton, South Carolina

Rationale and Interest in Design Development

Evolution of system designs for:

High output - Intensification for efficient use of land and labor, multiple crops per year, lower cost per pound

Biosecurity – assuring the health of the target crop by blocking introduction of excludable pathogens

Reduced water use – limited addition and discharge; water recovery

Microbial community management – recycling of waste within the system and enhancement of contributions of natural productivity to shrimp growth

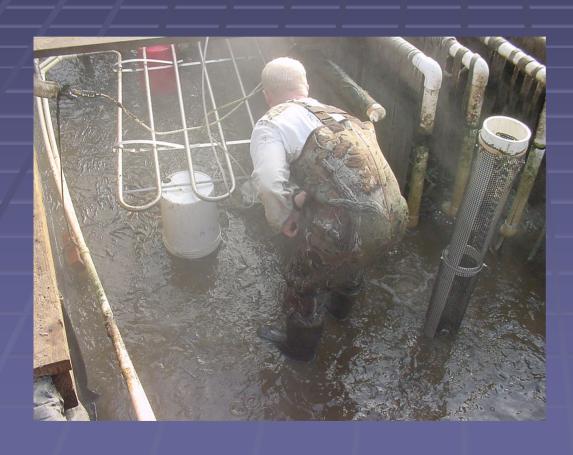
Waste treatment – Filtration, aerobic and anaerobic sludge digestion and dewatering system

Historical Perspective

- Research efforts toward producing more efficient, environmentally friendly shrimp production systems have a 30 year history
- Research toward commercialization of intensive production systems has been conducted at the WMC since the facility opened in 1984
- Efforts have intensified during the last 10 years with support from the USMSFP
- Continued low prices for domestic shrimp require reducing costs of production and development of better marketing strategies to remain competitive
- Coordination of these research efforts and addressing the needs of US shrimp producers is critical to keeping domestic shrimp production a viable industry

Preliminary design

- First raceway systems operated were 55 m² pilotscale raceways
- HDPE lined
- Aeration by 5hp regenerative blower augmented by two Aire-O₂ propeller aspirators in each
- Water temperature maintained through 1.6 m² heat exchange tubing attached to a single propane fueled boiler
- Vertical substrate consisted of suspended AquaMat[™] ~1m² /m³ water

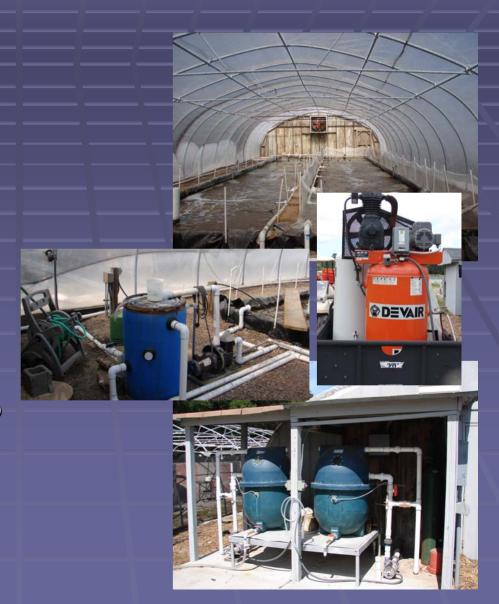


Preliminary data

System	Stocking Density	Days in Production			FCR	Production (kg/m²)	
			Trial 1				
RW2	200/m ²	70	10.2	57.0	2.2	2.4	
			Trial 2				
RW1	200/m ²	140*	19.3	60.9	2.3	2.3	
RW2	200/m ²	140*	18.9	63.1	2.4	2.4	
<u> </u>			Trial 4				
RW1	300/m ²	112*	14.6	70.5	1.8	3.1	
RW2	300/m ²	112*	15.4	71.5	2.0	3.3	

^{*} Reused the water from the previous trial

Harvest


Next generation

- 55 m² pilot-scale raceways
- HDPE lined
- Zero-exchange
- Aeration by 5hp regenerative blower augmented by portable Air Sep oxygen generator
- Water temperature was maintained by two L-shaped removable 3000W heaters
- Vertical substrate decreased to ~0.2 m² AquaMat™/m3 water

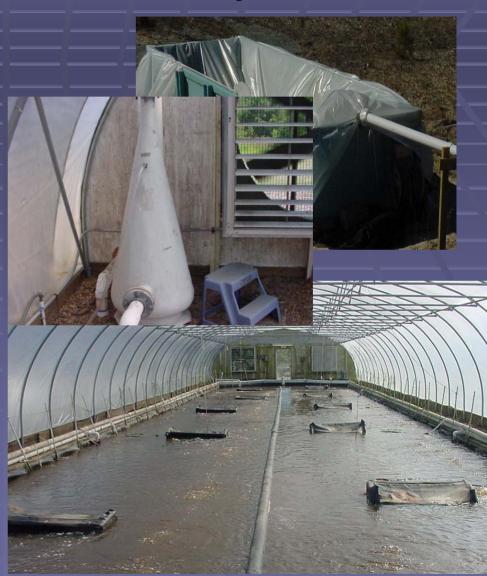
Next generation

- 55 m² pilot-scale raceways
- HDPE lined
- Zero-exchange
- Aeration by 5hp regenerative blower augmented by portable Air Sep oxygen generator
- Water temperature maintained by two L-shaped removable 3000 W heaters
- Vertical substrate decreased to ~0.2 m² AquaMat[™]/m³ water

Commercial Scale Raceway

- 282 m² commercial scale system
- 1 m mean depth sloped to 6" drain
- HDPE lined with welded central baffle
- Aeration by 5hp regenerative blower through airlifts augmented by a 1 hp AGL Oxygun propelleraspirator unit in the deep end and a 1-hp paddlewheel aerator
- Water temperature maintained through heat exchanger attached to a 1.4 billion BTU propane fueled boiler
- Vertical substrate consisted of free standing AquaMat[™] ~1m²/m³ water

Harvest

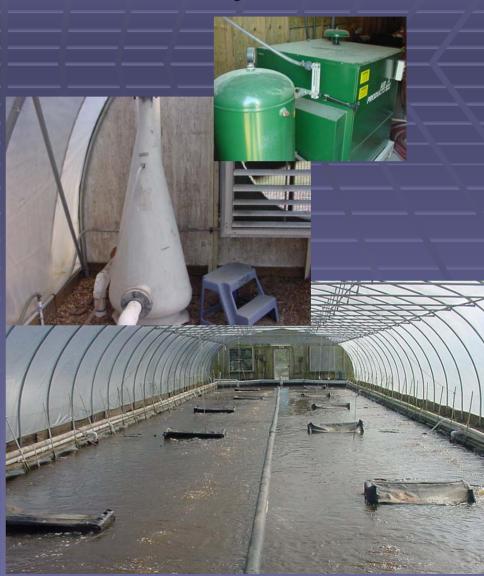


Production Data With This Construction

Stock Date	Stocking Density	Stocked As:	Days in Production	Survival (%)	Mean Ind. Wt. (g)	FCR	Harvest (kg/m³)	
Nursery Production								
April 2001	1,950/m²		97	98	1.01			
April 2002	1,950/m ²		28	97	0.55			
Growout								
Sept. 2001	300/m ²	PL5	140	55.2	17.1	1.9	2.8	

Commercial Scale Raceway

- 282 m² commercial scale system
- 1 m mean depth sloped to 6" drain
- HDPE lined with welded central baffle
- Aeration by 5hp regenerative blower through airlifts augmented by an Air Products 150 L/min oxygen generator plumbed to single manifold
- Water temperature maintained through heat exchanger attached to a 1.4 billion BTU propane fueled boiler
- Vertical substrate consisted of free standing AquaMat[™] ~1 m²/m³ water

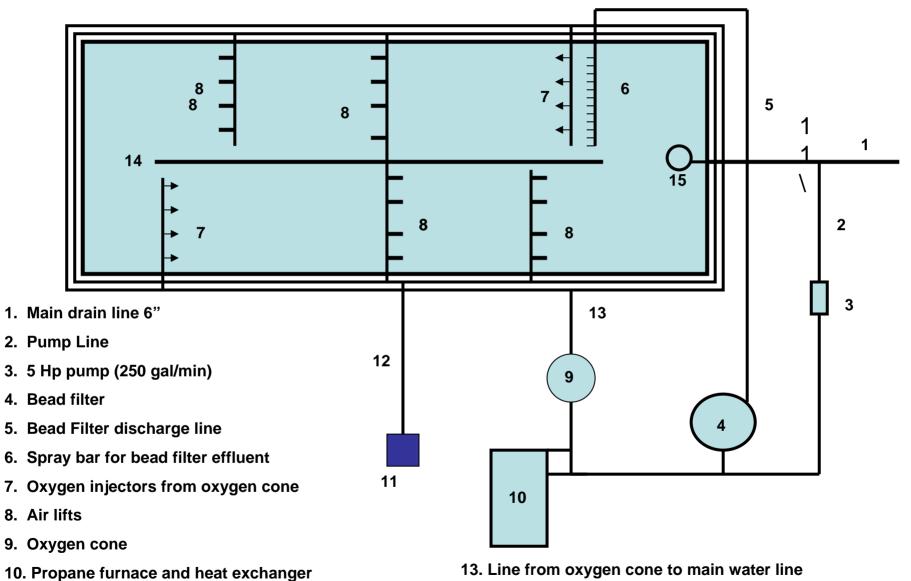

Production Data With This Construction

Stock Date	Stocking Density	Stocked As:	Days in Production	Survival (%)	Mean Ind. Wt. (g)	FCR	Harvest (kg/m³)		
Nursery Production									
June 2002	1,240/m²		38	97	0.31				
April 2003	3,456/m ²		42	0*	1.0	1.54			
Growout									
Jan. 2003	300/m ²	1 g juv.	76	91	16.6	1.5	4.5		
July 2003	420/m ²	PL25	113	80	20.4	1.9	6.8		

^{*} Killed by power outage 5/18/03

Commercial Scale Raceway

- 282 m² commercial scale system
- 1 m mean depth sloped to 6" drain
- HDPE lined with welded central baffle
- Aeration by 5hp regenerative blower through airlifts
- Oxygenation by an Air Products 40 L/min oxygen generator plumbed through single jet manifold
- Water temperature maintained through heat exchanger attached to a 1.4 billion BTU propane fueled boiler
- Vertical substrate consisted of free standing AquaMat[™] ~1 m²/m³ water



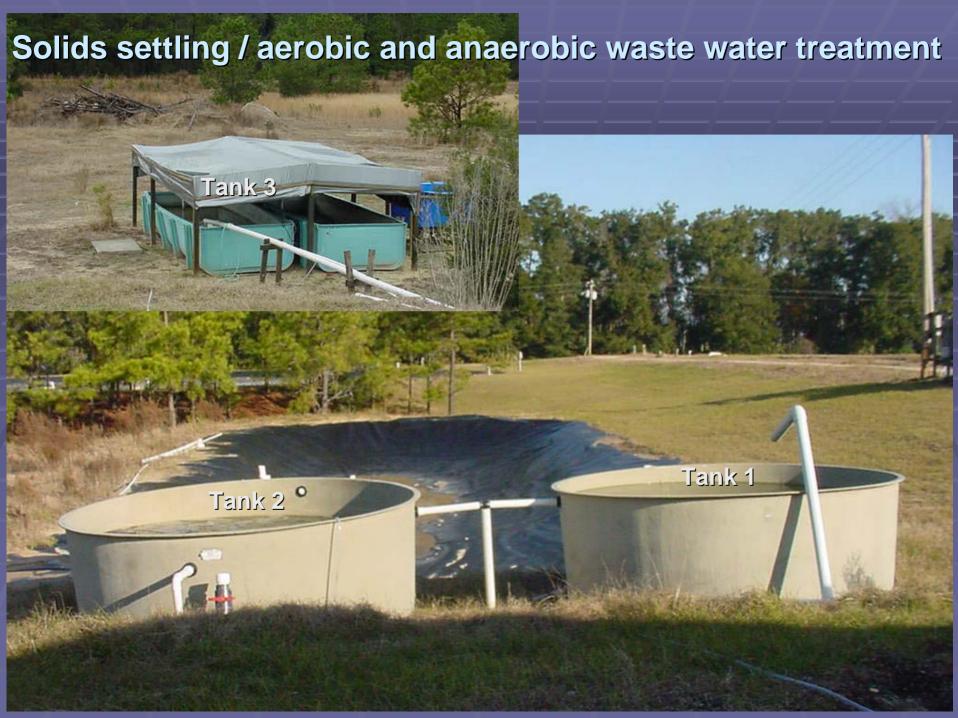
Commercial Scale Raceway

- 282 m² commercial scale system
- 1 m mean depth sloped to 6" drain
- HDPE lined with welded central baffle
- Aeration by 5hp regenerative blower through airlifts
- Oxygenation by an Air Products 40 L/min oxygen generator plumbed into two manifolds
- Water temperature maintained through heat exchanger attached to a 1.4 billion BTU propane fueled boiler
- Vertical substrate consisted of free standing AquaMat[™] ~1m²/m³ water

Waddell Mariculture Center Greenhouse Shrimp Production System

12. Airline to main air line

11. 5 Hp air blower


- 14. Center wall (HDPE)
- 15. Drain structure

Water return and oxygen injection site

Oxygen monitoring system

Filtration Optimization

- 25 ft² propeller washed bead filter backwash frequency:
 - Summer 2005 every 1-3 days
 - Winter 2005 every other day
- Monitored turbidity daily and total suspended solids at least weekly
 - Sampled water in and out of the filter to evaluate efficiency
- Adjusted flow to maintain bead filter pressure <10 psi</p>
- Overfiltration counterproductive to development of large biofloc
- Calculated g solids/kg harvested shrimp
 - Summer 2003 242 g/kg (backwash effectiveness reduced, no solids management)
 - Winter 2005 195 g/kg (backwash frequency reduced, solids management)

Production Data With This Construction

Stock Date	Stocking Density	Stocked as:	Growout Days	Survival (%)	Mean shrimp Wt. (g)	FCR	Harvest (kg/m³)		
Nursery Production									
April 2004	2,532/m ²	PL ₁₀	55	92	0.8	1.1	1.9		
March 2005	4,085/m ²	PL ₁₀	67	80	1.2	1.0	4.3		
	Growout								
July 2004	450/m ²	1 g juv.	123	54	25.6	2.6	6.3		
June 2005	499/m²	4 g juv.	59	84	16.4	1.4	6.7		
Nov. 2005	370/m ²	2.4 g juv.	140	74	21.5	0.96	5.4*		

^{*}Partial harvests prior to final harvest

Future directions

- Alternative filtration methods more intensive management of the microbial community
- Alternative oxygenation more flexible, more effective, less energy intensive
- Faster harvest improved product, less manpower intensive
- More efficient transition from nursery phase to growout phase reduced stress, less manpower intensive
- Increased production
- Eco-friendly technology

Future of Super-Intensive, Biosecure Systems

- Coordinated research is continuing at WMC, TAES, GCRL, NSU, MSU and OI
- The future of US farmed shrimp production is in biosecure, enclosed facilities which maximize water reuse, minimize labor and energy use, and control risk with efficient process management and redundancy
- Management of all aspects of production is critical
 - shrimp stock genetics
 - feeds and feeding
 - microbial communities and water quality
 - waste management
- Implementation of multi-raceway commercial scale systems will provide new opportunities for refinement and standardization of production operations

www.usmsfp.org

Funded through
Cooperative State Research , Education and Extension
Service

